En teoría de números, dado un número entero a y un entero positivo n coprimo con a (es decir, tal que mcd(a,n) = 1), el orden multiplicativo de a módulo n es el menor entero positivo k que cumple

ak ≡ 1 (módulo n).

El orden de a (mód n) se suele denotar ordn a, o bien On(a).

Por ejemplo, para determinar el orden multiplicativo de 4 módulo 7, calculamos 42 = 16 ≡ 2 (mód 7) y 43 ≡ 64 ≡ 1 (mód 7), por tanto, ord7(4) = 3.

Sin saber que estamos trabajando en un grupo finito, se puede demostrar que a tiene un orden si las potencias de a sólo pueden tomar un número finito de valores módulo n, por lo que debe haber dos exponentes, s y t, tales que asat (mód n). Como a y n son coprimos, esto implica que a|s-t| ≡ 1 módulo n.

El concepto de orden multiplicativo es un caso especial del orden de elementos de un grupo. El orden multiplicativo de un número a módulo n es el orden de a en el grupo multiplicativo cuyos elementos son los residuos módulo n de los números coprimos con n, y cuya operación de grupo es la multiplicación módulo n. Este es el grupo de unidades del anillo Zn; tiene φ(n) elementos (donde φ denota la función φ de Euler), y se denota por U(n) o U(Zn).

Como consecuencia del teorema de Lagrange, ordna siempre divide a φ(n). Si ordn a es igual a φ(n) y por tanto tiene el valor máximo que puede tener, entonces a se dice raíz primitiva módulo n. Esto significa que el grupo U(n) es cíclico y la clase de residuos de a lo genera.

Véase también

  • Aritmética modular
  • Orden (teoría de grupos)

MULTIPLICATION TABLE Multiplication Table Multiplication chart

Multiplication table Fotos und Bildmaterial in hoher Auflösung Alamy

El Orden de Las Operaciones Matemáticas PDF Multiplicación Soporte

Regla de signo de multiplicación Fotos und Bildmaterial in hoher

Multiplication Table Stockfotos & Multiplication Table Bilder Alamy